
Golmaal: Thanks to the Secure TimeCache for a Faster DRAM Covert Channel

Ajaykumar Kushwaha∗, Ajay Jain†, Mahendra Patel‡, Biswabandan Panda§
∗ Dept. of Computer Science and Engineering, Indian Institute of Technology Bombay, Email: ajaykushwaha@cse.iitb.ac.in

† Dept. of Computer Science and Engineering, Indian Institute of Technology Bombay, Email: ajayjain@cse.iitb.ac.in
‡ Dept. of Computer Science and Engineering, Indian Institute of Technology Bombay, Email: mahendrapatel@cse.iitb.ac.in

§ Dept. of Computer Science and Engineering, Indian Institute of Technology Bombay, Email: biswa@cse.iitb.ac.in

Abstract—Cache-based side-channels can cause information
leakage thanks to the latency difference between a cache hit
and a miss. One form of cache side channel is the shared
memory channel that leading to attacks like Flush+Reload
and Evict+Reload. A recent proposal in ISCA 2021 named
TimeCache mitigates cache attacks that exploit the reuse of
shared data and code between an attacker and the victim.
With TimeCache, the first request to any memory address
by a process is always a cache miss providing per-process
cache line visibility, and it makes sure processes do not benefit
from cached data brought in by another process until it pays
the price of the corresponding cache miss penalty. Though
TimeCache successfully mitigates cross-process shared memory
attacks at the caches, it makes the life of a cross-core DRAM
covert channel attacker easy.

We propose Golmaal, a DRAM covert channel that takes
the benefit of TimeCache as the sender/receiver need not flush
the cache line to reach the DRAM. The first access to a memory
address by different processes will always lead to a miss in
the cache hierarchy, and notably at the shared last-level cache
(LLC). We show that with the TimeCache, for a 16-core system
sharing DDR4 DRAM controllers, the bandwidth of a Golmaal
covert channel is in the range of 4.53Mbps to 6.82Mbps,
whereas without TimeCache, the bandwidth achieved is in the
range of 2.73Mbps to 4.61Mbps.

1. Introduction

Side and covert channel attacks through caches pose a
threat to the security of the system. Some of the commonly
used attack protocols are Prime+Probe [1] and Flush+Reload
[2]. Flush-based attacks exploit the reuse of shared data and
code. TimeCache [3] is a recent efficient yet lightweight
mitigation technique that mitigates shared memory-based
attacks like Flush+Reload [2] and Evict+Reload [4]. To
mitigate the Flush+Reload cache attack, TimeCache makes
the first access to a memory address by any process a
compulsory miss at the caches, and most importantly, the
last-level cache (LLC). This way, the attacker always gets
a longer access latency after the victim’s access to a shared
LLC line.

A brief introduction to TimeCache. TimeCache elim-
inates reuse-based cache attacks that use shared data/code
cache lines by providing per-process cache line visibility of
a shared cache line. With TimeCache, accesses to a shared
cache line by different processes are isolated in timing. For
example, if an attacker core (core 0) and the victim core
(core 1) share an LLC line L, then for a Flush+Reload
attack, the following sequence of events will happen with
TimeCache: (i) attacker core flushes the line L from
LLC, (ii) victim core accesses the LLC line L and gets
a response from DRAM, and (iii) then when the attacker
core reloads the line L, it gets an LLC miss (thanks to per-
process visibility cache lines with TimeCache).

TimeCache is implemented as a combination of both
hardware and software approaches. Software stores (and
restores) the process’s caching context along with con-
text switch timestamp at a context switch. The Hardware
implements bit-serial comparison logic to allow parallel
comparison of timestamps. This timestamp comparison is
employed to update the stale caching context. Apart from
timestamps, TimeCache uses a per-line per-process security
bit (s-bit), initially set to 0. When the s-bit is set for a
given process, it is not the first time access to a cache line
by a process. For a given LLC line, if the s-bit is 0 for
a process, the access results in a miss, and the response
comes from the DRAM. In this way, TimeCache eliminates
cross-core shared memory side and covert channel attacks
at the LLC. Overall, TimeCache claims that it only incurs
a minor delay of 1.5% due to the first access cache miss.

DRAM covert channel. DRAM covert channel exploits
timing differences between a DRAM row-buffer hit and
a row-buffer-conflict. First, both the sender and receiver
agree on a specific DRAM bank for covert communica-
tion (thanks to reverse engineering of DRAM addressing
scheme) [5]. For transmitting a “1”: Receiver continuously
accesses DRAM row i. Sender accesses a DRAM row j.
Next, when the receiver tries to access row i, it gets a row-
buffer conflict (slow access). Similarly, for transmitting “0”,
the receiver continuously accesses DRAM row i. The sender
does nothing. Next, when the receiver tries to access row
i, it gets a row-buffer hit (fast access). For a successful
DRAM covert channel, both sender and receiver need to
ensure that they get cache misses and access the DRAM

1

bank. The clflush instruction facilitates the same by
flushing a cache line from all levels of cache by providing an
LLC miss, whenever a sender or a receiver wants to access
DRAM. State-of-the-art cross-core covert channel proposed
in DRAMA [5] uses the above covert channel protocol and
provides cross-core covert-channel bandwidth of 2Mbps.

Opportunity. With TimeCache, it is not possible to
mount a cross-core Flush+Reload attack at the shared L3
cache. However, thanks to TimeCache, now it is possible to
mount a covert channel with minimal usage of clflush as
the first reload1 to an address (e.g., A) by all the processes
will come to DRAM. So, in summary, TimeCache leads to
a Golmaal2 as it eliminates shared memory Flush+Reload
attack at one shared resource (shared LLC) and in turn
facilitates a new shared memory covert channel at another
shared resource, the DRAM.

Our approach. We propose a high-speed DRAM covert
channel with multiple senders and receivers running on
multiple cores. One DRAM bank is used as a covert channel
between multiple sender and receiver processes sharing one
DRAM bank. All the receivers share, and access one address
(say A1) and all the senders share and access one address
(say A2). A1 and A2 are mapped to two different DRAM
rows of the same DRAM bank. Note that TimeCache pro-
vides cache miss for each process for their first access to
an address. So, in our covert channel, a pair of senders and
receivers communicate iteratively. With our protocol, only
the first sender and receiver use clflush. For example, after
a clflush to A2 by the first sender and A1 by the first
receiver, there is no need to use clflush by the rest of the
senders and receivers as all of them will get LLC misses,
thanks to TimeCache. After one round of communication
between all the senders and receivers, the sender and re-
ceiver need to use clflush again. For example, if we use
16 senders and 16 receivers for a covert channel and all the
senders want to communicate “1”, then with TimeCache,
only the first sender and receiver use clflush and LOAD
respective memory addresses. After that the remaining 15
senders and receivers just LOAD their respective addresses
(A2 and A1) as they get LLC misses even without using
clflush. The limited usage of clflush improves the
overall covert channel bandwidth.

Overall, we make the following key contributions:

• We propose Golmaal, a high bandwidth DRAM
covert channel. Golmaal exploits the design prin-
ciple of a recent mitigation technique called Time-
Cache that mitigates shared memory attacks at the
LLC.

• Our covert channel uses multiple senders and re-
ceiver processes for covert communication. The ef-
fectiveness of our covert channel increases with an
increase in the numbers of senders and receivers.

• We quantify the effectiveness of our channel in
terms of the raw-bandwidth and error rate. Overall,

1. We use the term load and reload interchangeably, in this paper.
2. Golmaal is a Hindi word that means a deceptive situation with some

amount of confusion involved.

Figure 1. Eight sender (S1 to S8) and receiver (R1 to R8) processes
communicating over one DRAM bank. All the senders share and access
address A1 and all the receivers share and access address A2. Both A1 and
A2 are mapped to two different DRAM rows but one DRAM bank.

Golmaal improves the bandwidth of a DRAM covert
channel with TimeCache compared to a conventional
cache.

2. Golmaal DRAM Covert Channel

Threat model and assumptions. Our covert channel
requires shared memory similar to Flush+Reload [2] and
Evict+Reload [4] that TimeCache eliminates at the LLC.
Note that as TimeCache is a mitigation technique is not
implemented on a real machine, we perform our covert
channel on a cycle-accurate micro-architectural simulator.
Both the sender(s) and the receiver(s) are aware of DRAM
addressing (thanks to the effort on reverse-engineering [5]).
Sender and receiver agree to communicate through a fixed
set of addresses mapped to one DRAM bank. Our covert
channel is a cross-core covert channel where the sender and
the receiver are part of multiple cores running on the same
physical CPU sharing the LLC and DRAM. We measure
the memory access latency with rdtscp and the memory
accesses are performed using volatile pointers similar to [5].
For synchronization between a sender and a receiver, we use
the wall clock available per physical CPU.

Shared memory agreement. We implement our covert
channel with multiple senders and multiple receiver pro-
cesses sharing addresses of one DRAM bank of a given
rank and channel. Figure 1 provides a high level overview
of the agreement between sender and receiver processes. We
do not relax the shared memory requirement as our goal is
to show the effect of TimeCache at the DRAM when it
eliminates shared memory attacks at the LLC.

Latency of clflush and LOAD. For a successful
DRAM covert channel, the sender and receiver need to use
clflush so that their memory accesses will reach DRAM
[5]. As per the Intel manual [6], a clflush instruction does
the following: it ”invalidates from every level of the cache
hierarchy in the cache coherence domain the cache line
that contains the linear address specified with the memory
operand. If that cache line contains modified data at any
level of the cache hierarchy, that data is written back to
memory. The source operand is a byte memory location.

2

ALGORITHM 1: Receiver process
1: while do
2: for all receivers (receiver-id 1 to N) do
3: // N receivers receiving N bits of covert

information in one iteration of for loop
4: if receiver-id ==1 then
5: // For the 1st receiver
6: clflush(A1)
7: LOAD(A1)
8: if load(A1) is fast then
9: databit=0 // Row-buffer hit

10: else
11: databit=1 // Row-buffer conflict
12: end if
13: end if
14: if receiver-id >1 then
15: // For the rest of the receivers
16: LOAD(A1)
17: if load(A1) is fast then
18: databit=0 // LLC miss in TimeCache,

Row-buffer hit
19: else
20: databit=1 // LLC miss in TimeCache,

Row-buffer conflict
21: end if
22: end if
23: sync-with-sender()
24: end for
25: end while

The clflush instruction can be used at all privilege levels and
is subject to all permission checking and faults associated
with a byte load (and besides, a clflush instruction is allowed
to flush a linear address in an execute-only segment”. Note
that the recent clflush implementation flushes the cache
line across the entire cache coherence domain, irrespective
of inclusive and exclusive nature of cache hierarchy [7].
One can argue about the usage of CLFLUSHOPT for a
faster flush based covert channel. However, CLFLUSHOPT
is more suitable to flush large buffers (e.g. greater than many
KBytes), compared to CLFLUSH [8]. In summary, a LOAD
to an address after the usage of clflush to that address
will always lead to a DRAM access.

We perform latency measurements using rdtscp for
clflush and LOAD latencies on Intel (Intel IceLake) and
AMD (A6-9220 RADEON R4) processors with eight cores.
The clflush latency varies from 185 cycles to 320 cycles
depending on the nature of cache line (clean or dirty) that
is flushed. The reload latency with DRAM row-buffer
conflict is around 375 cycles, whereas with row-buffer hit, it
is around 250 cycles, which is easily distinguishable. These
latency numbers correlate with the recent Intel IceLake
latency numbers for DRAM [9]. These numbers are also
similar to the numbers reported in a flushless LLC covert
channel [10].

Transmission protocol. Algorithms 1 and 2 provide

ALGORITHM 2: Sender process
1: while do
2: for all senders (sender-id 1 to N) do
3: // N senders sending N bits of covert information

in one iteration of for loop
4: if sender-id==1 then
5: // For the 1st sender
6: if databit==0 then
7: Do nothing
8: end if
9: if databit==1 then

10: clflush(A2)
11: LOAD(A2)
12: end if
13: end if
14: if sender-id >1 then
15: // For the rest of the senders
16: if databit==0 then
17: Do nothing
18: end if
19: if databit==1 then
20: LOAD(A2)
21: end if
22: end if
23: sync-with-receiver()
24: end for
25: end while

the pseudocode of receiver and sender processes, for covert
communication. Before communicating bits of information,
all the senders and receivers need to synchronize themselves,
similar to [5]. Also, the sender should run ahead by atleast
one DRAM access latency (say 400 cycles) so that receiver
can catch up and get accurate bits. The receiver always
accesses an address A1 and measures its latency using
rdtscp. If the latency is fast then it concludes that it has
received a bit “0” else “1”. Note that with the TimeCache, all
the receivers and senders do not use clflush to reach the
DRAM once the first sender and receiver have completed the
usage of clflush. This process repeats for every iteration
of the for loop where clflush is used only once by
the 1st sender and 1st receiver.

Proof of concept comparison. For the sake of simplic-
ity, let’s assume a clflush takes 300 cycles to complete
and a memory access with row-buffer conflict takes 300
cycles, whereas a row-buffer hit takes around 200 cycles.

Without the TimeCache, a covert channel between eight
senders and eight receivers communicating eight bits of
covert information through one DRAM bank will take an
average of 6800 cycles. A DRAM covert channel takes
500 cycles to communicate a “0”, a sender does nothing,
and a receiver uses clflush (300 cycles on an average)
and then reloads an address A1, and observes a row-buffer
hit (200 cycles on average). To communicate a “1”, sender
uses clflush (300 cycles) and reload (300 cycles) to
address A2 and receiver uses clflush (300 cycles) and

3

reload to address A1 (300 cycles), and observe a row
buffer conflict. So, in summary, to communicate “1” it takes
1200 cycles. So, on average, without TimeCache, one bit is
communicated in 850 cycles (6800 cycles for eight bits).

With TimeCache, to communicate a “0”, it takes
clflush (300 cycles) and load (200 cycles) from the
the first receiver process with a row buffer hit. So in total
500 cycles to communicate a “0” for the first process. For
communicating “1”, the first sender uses clflush (300
cycles) and reload (300 cycles) to address A2 and the
first receiver uses clflush (300 cycles) and reload to
address A1 (300 cycles), and observe a row buffer conflict.
So, in summary to communicate “1”, takes 1200 cycles for
the first receiver process. So, on average, it takes 850 cycles
to communicate the first bit (similar to the conventional
cache).

However, for the rest of the seven sender and receiver
processes, there is no need for clflush, which saves 300
cycles from the sender side and 300 cycles from the receiver
side. Note that, it will take 200 cycles for receiving a bit
“0” and 600 cycles for receiving a bit “1”. So, on average,
it takes 400 cycles per bit to communicate the 2nd bit to
8th bit. In total, with TimeCache, on average, a receiver will
get eight bits after 850 + (7 × 400) cycles = 3650 cycles
as compared to 6800 cycles without TimeCache. Please
note that for the sake of simplicity, we do not include the
synchronization overhead (waiting period of sender and re-
ceiver after communicating/receiving one bit of information)
between the sender and receiver as the overhead is a constant
factor in both TimeCache and the conventional cache. We
also do not show the usage of multiple DRAM banks for
covert communication as that is just an extension of what
we describe above for a single DRAM bank, and multiple
senders and receivers can communicate data in a pipelined
and interleaved way across multiple DRAM banks.

Timing Diagram. Figure 2 shows the difference in
latency with and without TimeCache to communicate a
payload of “0s”. Figure 2(a) shows the timing sequence
without Timecache where a receiver receives a sequence of
zeros. Note that to communicate a zero, the sender does
nothing. Without TimeCache, the receiver first needs to
clflush to make sure it reaches DRAM, then performs a
LOAD. Next, the other receiver processes (receiver-2 and so
on) perform a sequence of clflush and LOAD operations.
This sequence continues for all the processes. However, with
the TimeCache, only the first receiver process performs a
clflush and the rest of the receiver processes (receiver-
2 onward) do not use clflush as the first access to an
address made by a process is always an LLC miss. The
entire sequence of operations goes on till all the receiver
processes finish participating for one iteration (one iteration
of the for loop in Algorithm 1) in the covert channel.
After one complete iteration, the first receiver process again
needs to use clflush. Overall, the less usage of clflush
effectively improves the DRAM covert channel bandwidth.

Figure 2. Timing diagram for a payload of “0000...”. (a) Covert Channel
on a conventional cache and (b) proposed covert channel on a TimeCache.

3. Evaluation

Simulation infrastructure. We simulate our covert
channel with an extensively modified ChampSim microar-
chitectural simulator [11] that faithfully models a detailed
front-end and back-end of the processor, and the mem-
ory system involving caches, TLBs, DRAM controller, and
DRAM. We use the Ramulator [12] DRAM simulator and
merge it with ChampSim for a detailed simulation of DRAM
timing constraints. ChampSim was used for the recent cham-
pionships at ISCA 2016, ISCA 2019, ISCA 2020, and ISCA
2021. We simulate a 16-core system with microarchitec-
ture parameters as mentioned in Table 1. We simulate 2-
way hyper-threading per core, effectively simulating upto
32 hardware threads (sixteen sender and sixteen receiver
processes) on a 16-core system. To synchronize between a
pair of sender and receiver processes, we use the wall clock
time and use the nanosleep system call for 100ns (the
worst case latency of a clflush and LOAD operations,
400 cycles) after every DRAM access by a sender and a
receiver. Our simulated parameters are listed in Table 1 and
correlates with the recent Intel Sunny Cove. We simulate
DDR4 DRAM controllers with a data rate of 3200 MT/sec.
We implement this attack through one DRAM bank of a
specific DRAM channel. Our DRAM addressing and num-
bers of ranks, banks, and row size is same as the addressing
scheme mentioned in [5] for DDR4.

As TimeCache is not part of commercial multicore
systems, we implement our covert channel on a cycle ac-
curate microarchitecture simulator. We agree that the raw
bandwidth of our covert channel will decrease based on the
real system configuration. However, it will still be faster
as shown in the proof of concept example, if TimeCache
becomes part of real commercial systems.

Raw bandwidth. Figure 3 shows the raw bandwidth
(number of bits communicated per second) of the Golmaal
covert channel for a different count of sender and receiver
processes. As we can see, the raw bandwidth increases with
the increase in senders and receivers, which is intuitive.
We observe the maximum bandwidth of 6.82Mbps when
a group of sixteen senders and sixteen receivers commu-
nicate a sequence of “0s”. With eight senders and eight
receivers, we observe a bandwidth of 6.61Mbps. We see a

4

1 2 4 8 16
0

1

2

3

4

5

6

7

8

Number of senders and receivers

R
aw

B
an

dw
id

th
(M

bp
s)

00000000...
Random...

10101010...
11111111...

Figure 3. Raw bandwidth for different data payloads with various sender-
receiver configurations.

Table 1. SIMULATED PARAMETERS.

Core 16 Out-of-order cores, hashed perceptron branch predictor,
4GHz with 6 issue width, 4 retire width, 352 entry ROB

TLBs 64 entry 4-way at L1 DTLB/ITLB (1 cycle), 2048 entries 16-
way entry L2 STLB (8 cycles)

MMU
Caches

2 entry (PSCL5), 4 entry (PSCL4), 8 entry (PSCL3), 32 entry
(PSCL2), searched parallely, one cycle

L1 32KB 8-way L1I (4 cycles), 48KB 12-way L1D (5 cycles)
L2 512KB 8-way associative (10 cycles)
LLC 16 2MB slices, 16-way (average, 80 cycles)
DRAM 1 channel/4-cores, DDR4-3200, 16 banks/rank, 4 bank groups

decrease in raw bandwidth when senders and receivers want
to communicate a sequence of “1s” with a bandwidth of
4.53Mbps. While communicating “1s”, the senders perform
LOAD access that decreases the bandwidth as compared to
the case where senders communicate a sequence of “0s”
where the sender does nothing. While communicating “1s”
and “0s” alternatively, the Golmaal channel provides a raw
bandwidth of 5.05Mbps. For the average case, we have
generated 10 random sequences, then while calculating the
bandwidth, we take the average and get a raw bandwidth of
5.88Mbps. When compared with the DRAM covert channel
without TimeCache, we observe a covert channel bandwidth
of 2.73Mbps to 4.61Mbps for communication of payloads
with all “1s” and all “0s”, respectively. Note that, our
bandwidth numbers do not consider the effect of system
noise as we simulate the channel on a simulator.

In summary, TimeCache improves the speed of a DRAM
covert channel as the raw bandwidth without Timecache.
Please note that, a DRAM covert channel bandwidth of
5Mbps (more than 600 KBps) is in the range of LLC
based covert channels like [13] and [2] that provide a raw
bandwidth of 400 KBps. So Timecache, eliminates flush
based side/covert channels at the caches and makes it easy
to mount a faster covert channel at the DRAM.

Error probability, true capacity, and effect of syn-
chronization period. To understand the effect of errors

0 1 2 3 4 5
0

2

4

6

8

10

12

14

Raw Bandwidth(Mbps)

E
rr

or
Pe

rc
en

ta
ge

Figure 4. Error percentage and raw-bandwidth(Mbps) for a pair of eight
senders and eight receivers communicating a payload of “11111111..1”.

0 1 2 3 4 5
0

1

2

3

4

5

Raw Bandwidth(Mbps)

Tr
ue

C
ap

ac
ity

(M
bp

s)

Figure 5. True Capacity(Mbps) and Raw-Bandwidth(Mbps) for eight
senders and eight receivers communicating a payload of “1111111...1”.

on the raw bandwidth, we quantify the error rate for a
pair of eight senders and eight receivers as eight senders
and eight receivers provide the sweet spot in terms of raw
bandwidth and error rate. Figure 4 shows an increase in
the error rate (bit “1” termed as “0”) with an increase in
covert channel bandwidth. The covert channel bandwidth
is affected by the synchronization delay, the higher the
synchronization delay, the lower the error rate and covert
channel bandwidth. Figure 5 shows the true capacity in
Mbps (which is just below 5Mbps) for the eight senders
and receivers communicating a payload of “11111111....1”.

Pushing the covert-channel bandwidth. Recent flush-
less cache covert channel like Streamline [10] provides very
high channel bandwidth. To push the limits of the Golmaal
channel bandwidth, multiple DRAM banks (two addresses
per bank) can be used concurrently where at a given point

5

of time, one sender and receiver can communicate through
one DRAM bank. The transmission protocol should be a
pipelined one and the synchronization among senders and
receivers across multiple banks will be the key for high
bandwidth. We intend to explore these ideas as part of our
future work.

Effect of Memory scheduling policy. Memory schedul-
ing policies can affect the order of LOADs and clflush
requests, at the DRAM controller. However, with Golmaal,
there is a less scope of reordering thanks to the delay
induced because of synchronization between sender and
receiver.

Mitigation techniques. The effectiveness of Golmaal
DRAM channel can be reduced by implementing Time-
Cache at the DRAM row buffer. However, this will incur
additional design complexity. Another approach of Time-
Cache can be to project the latency of DRAM on every
first-access from a process but not by sending the request to
DRAM but by delaying the response from LLC (by adding
a constant: 100s of cycles).

4. Conclusion

We proposed a DRAM covert channel named Golmaal
on TimeCache that is faster than the DRAM covert channels
on a conventional cache. We find that, TimeCache can
mitigate the Flush+Reload at the shared cache. However, it
improves the bandwidth of a new proposed DRAM covert
channel that utilizes multiple processes to fool TimeCache.

References

[1] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in 2015 IEEE symposium
on security and privacy. IEEE, 2015, pp. 605–622.

[2] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack,” in 23rd {USENIX} Security
Symposium ({USENIX} Security 14), 2014, pp. 719–732.

[3] D. Ojha and S. Dwarkadas, “Timecache: Using time to eliminate
cache side channels when sharing software,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 375–387.

[4] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive Last-Level caches,”
in 24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, Aug. 2015, pp.
897–912. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/gruss

[5] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM addressing for Cross-CPU attacks,”
in 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, Aug. 2016, pp.
565–581. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/pessl

[6] “Intel Corporation. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual. Number 253669-033US.” 2018.

[7] A. Saxena and B. Panda, “Dabangg: A case for noise resilient
flush-based cache attacks,” in 16th IEEE Workshop on Offensive
Technologies, ser. WOOT 2022. SAN FRANCISCO, CA: IEEE,
2022, pp. 1–11. [Online]. Available: https://www.cse.iitb.ac.in/
∼biswa/WOOT22.pdf

[8] “CLFLUSHOPT,” http://www.intel.com/content/dam/www/public/us/
en/documents/manuals/64-ia-32-architectures-optimization-manual.
pdf, 2014.

[9] “DRAM latency in IceLake,” https://www.7-cpu.com/cpu/Ice Lake.
html, 2021.

[10] G. Saileshwar, C. W. Fletcher, and M. Qureshi, “Streamline: A
fast, flushless cache covert-channel attack by enabling asynchronous
collusion,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1077–1090. [Online]. Available:
https://doi.org/10.1145/3445814.3446742

[11] Online. Available: https://github.com/ChampSim/ChampSim, Champ-
sim Simulator.

[12] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, 2016.

[13] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush:
A fast and stealthy cache attack,” in Proceedings of the 13th
International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment - Volume 9721, ser. DIMVA 2016.
Berlin, Heidelberg: Springer-Verlag, 2016, p. 279–299. [Online].
Available: https://doi.org/10.1007/978-3-319-40667-1 14

–
–

6

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.cse.iitb.ac.in/~biswa/WOOT22.pdf
https://www.cse.iitb.ac.in/~biswa/WOOT22.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.7-cpu.com/cpu/Ice_Lake.html
https://www.7-cpu.com/cpu/Ice_Lake.html
https://doi.org/10.1145/3445814.3446742
https://github.com/ChampSim/ChampSim
https://doi.org/10.1007/978-3-319-40667-1_14

	Introduction
	Golmaal DRAM Covert Channel
	Evaluation
	Conclusion
	References

