
DramaQueen: Revisiting Side Channels in DRAM
Victor van der Veen

Qualcomm Technologies Inc.
vvdveen@qualcomm.com

Ben Gras
Intel Corporation

ben.gras@intel.com

Abstract—The only way to process sensitive information se-
curely is to ensure that every aspect of the processing is constant-
time: No aspect of the execution, be it algorithm, implemen-
tation, or (micro)architecture, may depend on the sensitive
information, be it in timing, code accesses, or data accesses.
In practice, however, seemingly constant-time algorithms may
leak information through unexpected data-dependent behavior
of the compiler, or through the hardware that executes them. It
is attractive to make non-constant-time implementations secure
using software layers. Therefore, there is value in frameworks
that add security to current implementations, be it as a defense-
in-depth measure, or as a measure to isolate known insecure
behavior from observation.

In this paper, we analyze what might be considered a straw-
man framework to implement such isolation: What if, in an effort
to make existing implementations increasingly resistant against
microarchitectural side-channel attacks — which mostly seem to
exploit CPU caching behavior — we not only disable Synchronous
Multithreading, but also force all sensitive accesses to use non-
cacheable memory? This would surely cut off a great deal of
known side channels.

We show that an algorithm that exhibits secret-dependent
accesses, protected by such a framework, nevertheless leaves open
one remaining exploitable hardware resource: the DRAM bank
conflict timing channel. By observing DRAM accesses using the
bank conflict side channel, we deduce secret-dependent access
patterns. We revisit, reproduce, and extend the state-of-the-art
and find that due to aggressive interleaving applied by modern
processors, the granularity of the side channel is closer to a
cacheline than to the DRAM row size. Using weak attacker
assumptions, we show full key recovery results when applied to a
cryptographic algorithm that is not implemented using constant-
time principles, using just a single trace capture. Out of 82 of
100 trials, the median brute force key recovery effort after side
channel processing was 230 or less, reducing the time required
to leak cryptographic keys to minutes.

I. INTRODUCTION

Side-channel research is an active research area [1]–[18],
as side channels may reveal sensitive secrets in practice.
Recognizing the security risks in having multiple security
domains share micro-architectural resources, which allow for
these side channel attacks, a number of generic mitigation
approaches have been proposed. We discuss some categories
here.

Generally, accurate sources of timing are needed, and
one suggestion has been to limit these [19]–[21]. Other
approaches include a generic cache side channel protection
framework [22]–[27], oblivious RAM [28]–[32], or hardware-
assisted methods [33]–[35], typically repurposing hardware
features not intended for security but having usable security
properties as a side effect [36]–[38].

Recognizing that cross-thread micro-architectural attacks
are difficult to prevent reliably, OpenBSD has disabled Simul-
taneous Multithreading (SMT) by default [39]. We assume an
unprivileged attacker that can not monitor power meters, and
therefore power side channels [40]–[42] will not work [43].
We discuss the threat model in detail in Section III-A.

A. Straw-man design of ultimate protection

In this work we aim to analyze the security properties of a
straw man cache side channel protection framework. Taking
the OpenBSD approach of minimizing side channel risks by
minimizing shared microarchitectural resources to its ultimate
conclusion, we propose what might appear to be a system
of increased protection against certain concurrent microarchi-
tectural side channels. We only consider side channels that
operate concurrently to the victim, i.e., on their own core
or CPU thread, as time-sliced approaches can be blocked by
the OS [44]. Our straw-man design proposes the following
countermeasures:

• Disabling SMT, which precludes side-channel attacks
relying on concurrent on-core resource sharing, such
as on-core caches [45], TLBs [3], branch prediction
buffers [46], line fill buffers [18], blocking a large number
of attacks [1], [12]–[17].

• Not allowing security-sensitive code to cache its code
or data, which precludes all side-channel attacks relying
on off-core caches [4], [47] or CPU interconnects [48],
[49]. (Monitoring the interconnect fabric will be able
to observe the volume of DRAM accesses, but previous
work depends on observing LLC traffic to make the attack
work.)

At first sight, this might appear to be nearly perfect protection.
After all, if there are no micro-architectural shared resources,
how can there be side channels? As we shall see, resource
sharing remains in the form of DRAM, and we shall explore
how harmless or harmful it may be as a side-channel avenue
when all other paths for side channels appear to be blocked.
For the purposes of our attack, we assume an open page
policy in the memory controller, a topic we will revisit when
discussing the threat model, in Section III-A.

This work builds upon the insights in previous research that
reverse engineers DRAM geometry [50]–[52], and analyzes
the impact on software behavior and information leakage [53],
[54]. Earlier work [53], [55] has reported on the power
of observing DRAM accesses, but in this paper we take a
different perspective: How strong is this signal if all accesses



are to DRAM, instead of just the LLC cache misses? We build
the system that the straw-man design proposes, and quantify
the answer to this question by letting a spy observe the DRAM
contention signal with fine time granularity of a victim known
to do secret-dependent memory accesses.

B. Contributions

This work makes the following contributions.
1) We propose and build the straw-man design of a seem-

ingly ideal side channel attack protection system by
marking all code pages that perform secret-dependant
operations as non-cacheable (or uncached).

2) We show that, while a system may theoretically be
not vulnerable to cache attacks, an attacker can still
monitor the DRAM bank conflict signal with high time
granularity. We reliably extract a cryptographic key from
a victim by observing the DRAM bank conflict signal
with just a single trace capture.

3) In the process, we partially reproduce and confirm the
validity of prior art on DRAM-based side-channel at-
tacks [53], but also expand it by weakening assumptions.
While [53] demonstrates a covert channel where same-
row co-residency is not required, we show that it is also
not strictly required for a spy to have access to the same
row in a bank as the victim when performing a side-
channel attack.

In summary, rather than demonstrating a new attack of great
novelty, we wish to make the novel demonstration that the
straw-man side channel defense of using only uncached ac-
cesses is at best an incomplete proposal.

II. BACKGROUND

In this section, we discuss DRAM geometry, DRAM in-
teraction with a Host (CPU/SoC), and possible timing side
channels that an attacker gets for free with modern DRAM
devices.

A. DRAM Geometry

DRAM stores data as an electrical charge in capacitors.
Several capacitors form a column and multiple columns are
further grouped into a row. Multiple rows form a bank. Since
DDR4 and Low Power (LP)DDR5, multiple banks together
could optionally form a bank group. Up to 16 DRAM banks
or 4 bank groups comprise a rank, and a single DRAM device
may include multiple ranks.

A Memory Controller (MC) acts as a Host and commu-
nicates with DRAM through an asynchronous interface. To
increase both storage capacity and throughput, a processing
element may be equipped with multiple DRAM devices, each
connected to a dedicated channel with its own MC. The phys-
ical address space is then often interleaved, for example, every
256 Bytes or 512 Bytes of physically contiguous memory
could map to a different memory channel (and thus MC) [53].

B. DRAM Commands

At a hardware level, the Host uses dedicated command pins
to issue commands over the command bus to DRAM, while the
data pins are used to transfer actual bits to and from the DRAM
over a data bus. Then, only a few commands are required to
implement support for read and write transactions:

1) Activate (ACT) takes as parameter a bank and a row.
When issued, DRAM activates the given row in the bank,
ensuring that data from the capacitors are moved towards
an in-DRAM structure typically referred to as row buffer.
After issuing ACT, MC must wait for some time before
issuing the next command. This time is referred to as
tRCD (RAS to CAS delay — RAS/CAS stands for
Row/Column Address Strobe).

2) Read (RD) or Write (WR). This commands takes as
parameter the column in the row that MC wants to access.
After issuing RD or WR, MC must wait for tCL (CAS
latency) before data can be transferred.

3) Data transfer. This is when data moves from the Host to
the Guest (DRAM) or vice versa.

4) Pre-charge (PRE). This command takes as parameter the
bank that should be closed and instructs DRAM to move
the contents from the row buffer back into the actual
capacitors. MC must always pre-charged a bank before
the next ACT. MC must wait for tRP before issuing such
next ACT.

C. Timing Side Channels in DRAM

Above commands allow for great flexibility and optimiza-
tion possibilities, depending on where the requested memory is
stored and how it is accessed. Figure 1, shows how accessing
only two addresses already introduces various optimizations
and thus timing side channels. We assume an attacking CPU
that accesses two uncached memory locations in a loop, with
sufficient time before looping back to ensure that read data
propagated back to the CPU. This ensures that the read oper-
ations are completed by MC, and that MC cannot reschedule
them. This is obtained through a memory fence (mfence on
x86) or instruction barrier (isb on ARM) and can be found
in many Rowhammer [56]–[58] Proof-of-Concepts.

In Figure 1A, our addresses fall in two different channels
(CH0 and CH1) and can thus get processed by two different
MCs concurrently. The figure shows that at timestamp 3, both
CH0 and CH1 will issue a RD instruction. Both read requests
will complete by timestamp 8.

In Figure 1B, our addresses fall in the same channel, but
in different banks. Because each bank has its own row buffer,
banks can be accessed and commanded at (almost) the same
time (bank-level parallelism). Naturally, command and data
pins are still shared (both banks are accessed by a single
MC). This means that the ACT command to row R in bank B
must be issued before MC can issue ACT B’, R’. However,
MC does not have to wait for the DRAM to complete the
expensive in-DRAM row activation operation. This makes that
the scenario in Figure 1B is only marginally slower than when
two addresses fall in different channels.



1Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade Secrets

Time

A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CH0
ACT 

B, R
tRCD RD Y tCL PRE B tRP

CH1
ACT 

B, R
tRCD RD Y tCL PRE B tRP

B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CH0
ACT

B, R
tRCD RD Y tCL PRE B tRP

CH0
ACT

B’, R’
tRCD RD Y’ tCL PRE B tRP

C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CH0
ACT 

B, R
tRCD RD Y tCL RD Y’ tCL PRE B tRP

D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CH0
ACT 

B, R
tRCD RD Y tCL PRE B tRP

ACT

B, R’
tRCD RD Y tCL PRE B tRP

Figure 1: Depending on where two addresses are physically located, accessing them results in different command sequences and timings. Note that this is a
simplified diagram, with each timeout, e.g., tRP, taking defined as two “time slots”

Figure 2: DRAM bank conflict signal (high latencies) and shared row-buffer
signal (low latencies).

In Figure 1C, our addresses fall in the same bank and in
the same row. Here, we depict a common optimization: When
data is requested in a row that is already open, i.e., the row is
already activated, there is no need to pre-charge the bank and
activate the row again. This is a so-called page hit and after
issuing the RD to column Y, MC will issue a second RD to
column Y’. Regardless this optimization, this scenario is still
slower than the previous ones because DRAM must now wait
for one full transfer to complete before it can start the second.

In Figure 1D, we see a worst-case scenario in which our
addresses are in the same bank, but in different rows. In this
scenario, MC must issue and wait for an additional PRE and
ACT to complete before it can read from the second address.
This is a page miss. We also refer to this as a bank conflict.

D. Timing Side Channels in Practice

In Section IV, we will demonstrate a side channel attack
on a Intel Coffee Lake platform. Showing the platform-
independence of the DRAM bank conflict phenomenon, Fig-

ure 2 shows access latencies for all possible combinations
of selecting two memory locations in a 256KB physically
contiguous uncached memory region on a Pixel 4XL device,
using a stride of 64B. The experiment is similar to Figure 3
of [57] and shows how accessing different address pairs in a
tight loop results in different access latencies. From the figure,
we can observe side channels as outlined earlier in Figure 1.
We step 64B between accesses.

We observe a recurring pattern of small squares with
high latency, e.g., at X = 1500 and Y = 0, that indicate a bank
conflict / page miss. These squares of bank conflicts are harder
to predict than those in Figure 3 of [57], but nevertheless reveal
a clear signal exists, allowing one to observe whether two
addresses fall in the same bank (but different rows).

We observe a diagonal of fast accesses from the bottom
left corner to the top right corner. These addresses are close to
each other in the physical address space and likely fall in the
same bank and sometimes also in the same channel: Zooming
in on the figure, we see that only one in four accesses is fast,
meaning that in this case, same channel, same bank, same row
accesses are faster than any other access pair. We speculate that
this is caused by an MC optimization that converts Figure 1
to a scenario in which our instruction barrier does not result
in MC pre-charging the bank. We expect that MC can avoid
the additional ACT and PRE in several successive iterations,
greatly speeding up the access time. Note that there is a limit
to how long a row can remain open, meaning that eventually
MC must issue the pre-charge and additional ACT.

Zooming on the diagonal fast access blocks, but also on
the bank conflicts blocks, we observe that only one in four
successive access pairs triggers a conflict. This suggests that
the device uses 4 channels — which is indeed according its
specification — and that each channel is 64B interleaved, i.e.,
each 64B falls in another channel.

We observe that the majority of accesses has roughly the



same access time. This is expected, as most pairs will fall in
different banks, either in the same or a different channel.

The sharp black horizontal line near X = 2000 and Y
= 3300 is a small series of measurements failures where our
timer reported an excessively large or small (negative) time
delta. These outliers are filtered and automatically replaced
with a dummy value of 0.

We observe an additional signal encoded as faint vertical
lines of slightly slower accesses, repeating every 4 accesses
(channel conflict), e.g., from X = 1500 to X = 2000, but with
gaps between groups of such vertical lines, e.g., from X =
2000 to X = 2500. We do not fully understand the origin of
this signal.

In the remainder of this paper, we focus on exploiting
the bank conflict / page miss side channel: A spy can
continuously time individual accesses to different banks to
determine whether a victim accessed that bank as well —
leaking information about the victim’s memory access pattern.

III. THREAT MODEL AND ATTACK

A. Threat Model

We assume a victim running sensitive code on a dedicated
processing core — a CPU in our case study. As the attacker
doesn’t share a core (either by a 2nd hardware thread or by
time-slicing), this precludes cross-thread side channels from
working. An attacker with access to the same machine, but
not the same core, can run arbitrary unprivileged code. We
assume no software vulnerabilities and correctly functioning
process isolation. To protect itself from cross-core side channel
attacks, the victim leverages a kernel module [23], [59] to
mark memory pages containing sensitive data and code as
uncacheable. The attacker may run on any processing element
that shares a memory controller with the victim, assuming it
is fast enough to trigger and detect bank conflicts with the
victim: our threat model does not require the attacker and
victim to share the same operating system running on the same
subsystem, only that the attacker can obtain physical memory
that can generate a bank conflict with the victim. We also
assume, for practical reasons, that the attacker can trigger the
victim at will, and that the attacker knows the code that the
victim is executing. We assume an unprivileged attacker that
does not have access to reading power meters, and so power
side channels [40]–[42] will not work [43].

The attacker may trigger the victim. This means the attacker
may cause the victim to start executing security-sensitive code,
such as a cryptographic signing operation using a private key,
an unlimited number of times. The victim will use a different,
random key each time.

While we do not show this in our case study, the victim
may run on a digital signal processing core while the attacker
process runs on the CPU, assuming the attacker can get access
to memory that can induce bank conflicts with the victim. Due
to commonly applied aggressive interleaving we believe this is
a weak assumption. For the purposes of our attack, we assume
an open page policy in the memory controller, likely causing

a relatively strong signal to the attacker compared to a closed-
page policy.

The page policy is a configuration choice that is usually
controlled by system firmware. A system administrator may
reason that selecting a closed-page policy eliminates the side
channel. We hypothesize, however, that even a closed-page
policy can leak information about whether two addresses
share a bank: Always closing the page after an access would
transpose Figure 1C to match the command sequence in
Figure 1D, but it would not remove same-bank contention.
This means that it should still be possible to distinguish same-
bank accesses (Figure 1C and D), from different-bank accesses
(1A and B). We leave quantifying the power of this side
channel under a adaptive or closed page policy to future work.

B. Attack

In our case study, both attacker (spy) and victim run on
the application core subsystem as a typical Linux process.
Both are unprivileged. The victim is a classic cryptographic
library, performing operations using bits of a private key. The
attacker and victim are running on two different physical cores.
The attacker seeks to find a single cacheline that is in the
same DRAM bank as (co-resident with) any memory that
the victim accesses while executing the sensitive code. When
successful in finding such a cacheline, the attacker can observe
the interference caused by the victim to the attacker in the
form of occasional latency increases. We assume this latency
increase is caused by row changes in the DRAM bank due to
an open row policy. This is because, if the victim accesses a
particular row, when the attacker tries to access a different row,
a precharge + activation must happen for the attacker access.
This causes a latency difference compared to the victim not
doing an access in the same bank between accesses, and this
is the basis of the side channel.

To find such a cacheline that, when accessed in DRAM,
sees a significant victim-induced disturbance, the attacker
proceeds as follows. The attacker allocates a range of mem-
ory. The attacker then guesses a cacheline from this range,
and accesses this selected attacker cacheline in a loop. The
attacker measures the latency of each access. The mean of
these latencies gives the attacker a baseline latency. After
establishing a latency baseline, the attacker triggers the victim
execution, and monitors the same cacheline again. If the
attacker-observed mean latency is now higher and above a
threshold, this cacheline is a candidate for being co-resident
with victim memory. This makes this attacker cacheline a
candidate for the side-channel attack. We then repeat the
process of capturing a trace of latencies, for many different
addresses (i.e., cachelines), while the victim is executing, and
save these traces for later evaluation.

The final step of the attack is key recovery. The assumption
is that the observed interference pattern will be different for
different parts of the keybit-dependent execution of the victim.
As an example of the attacker-observed latencies, see Figure 3.
If the attacker can recognize these phases reliably, they can
recover the key. To do this, the attacker processes the traces



Figure 3: Visualization of attacker-observed latency, before and after smooth-
ing.

Figure 4: Sketch of the insecure version point-scalar multiplication in libgcrypt
1.6.3, showing secret-dependent accesses.

void
mul_point_scalar (point result,

scalar scalar, point point)
{
for (j=nbits-1; j >= 0; j--) {
ec_duplicate_point (result);
if (bit_on (scalar, j))
ec_add_point(result,point);

}
}

using simple post-processing and a machine learning classifier,
combined with ground truth information, in order to recover
the secret key. Details of that phase follow in Section IV.

C. Victim

The software target (‘victim’) is a cryptographic
algorithm implemented in libgcrypt 1.6.3,
specifically the known-insecure version of the
_gcry_mpi_ec_mul_point point-scalar multiplication.
This routine multiplies a scalar by a point on an elliptic curve,
and is used in secret key operations such as message signing.
The secret is the scalar. The multiplication is implemented
by processing the string of secret key bits one by one,
and at each step, unconditionally doubling the result, and
conditionally adding the elliptic curve point value to the
current result. The point is only added to the result if the
secret key bit is a 1. Clearly, this makes the code execution
path secret-dependent. A conceptual sketch of the code is
shown in Figure 4, where the secret-dependent access can be
seen: the function of adding a point is only executed when a
secret key bit is 1.

IV. CASE STUDY

A. Design

In our case study, we show results of a key recovery
experiment. Our testbed is a 3.1GHz Intel i9-9900 Coffee Lake
with 2×32GB DDR4 DRAM, 1.2V, configured at 2133 MT/s.
It is running Ubuntu Linux. We were not able to definitively
determine the configuration of the memory controller w.r.t.
page policy, but we believe the latencies seen by the attacker
justify the assumption that we are seeing an open-page policy.

We attack a victim executing cryptographic code as de-
scribed in Section III-C, on which we aim to apply the straw-
man protection design as discussed in Sections I and III, as
follows:

1) Disabling SMT, precluding cross-thread side channels.
2) Marking all code that is invoked in a secret-dependent

way as uncacheable. To do this we re-use ConTExT [23],
at [59]. We do not use the code for its intended purpose,
which is defending against Spectre, so we do not intend
to imply we break the defense. For the purpose of
implementing our straw-man protection it works well,
however.

As described in Section III, the attacker collects many traces
generated from observing 100 different cachelines, each of
which showing apparent victim-sensitive latencies. Each of
these attacker cachelines are a candidate for our side channel.

To assess how many of these candidates can be used to
mount a successful attack, for each attacker cacheline we train
a SVM classifier on 4 of the captured traces using available
ground truth, and evaluate the performance of the classifier
and key recovery process using 16 other captured traces of
the same cacheline.

In order to train a classifier on a captured trace, we first
normalize the signal by subtracting the mean, dividing by
the standard deviation, and smoothing the result (a moving
average of 100 samples). The goal of the classifier is to identify
executions of the ‘duplicate’ and ’add’ phases of the secret key
processing (see Figure 4), each revealing direct information
about the secret key bits. While each of these phases may
generate hundreds of samples, we wish to know only when
they start to execute, so that we count only a single instance
each time. In other words, we wish to know the function
boundaries.

To do this, we cut a single execution trace into many
overlapping sub-traces of 300 samples each, and train the
classifier using labels depending on where the sub-trace starts.
If the sub-trace starts at the start of an ‘add’ phase, we give
the sub-trace a label of 1. If it starts at the start of a ‘duplicate’
phase, we give it a label of -1. The majority of sub-traces start
somewhere in between these two, and are given a label of 0.
If the classifier were to be operating perfectly, when asked
to classify a signal, we expect to see a short spike of label
1 whenever an ‘add’ starts executing, a short spike of label
-1 whenever a ‘duplicate’ starts executing, and 0 at all other
moments.

In all cases, each trace is processing a different, randomly
generated key. We repeat this training and evaluation process
for each of the 100 selected cachelines, each giving a set of
traces.

B. Results

In our case study, the attacker tries all cachelines from a
200kB buffer (3200 cachelines), and find that 987 (31%) give
some sort of signal when the victim is executing vs. when it is
not. As an example of a trace, see Figure 3, where we observe
the latency signal while a victim is executing, both the raw



0 500 1000 1500 2000 2500 3000 3500 4000

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Classifier output without known boundaries

boundary
classifier output
dup detection
add detection

Figure 5: Visualization of key recovery.

latency signal and the smoothed signal. The keybit-dependent
phase of the victim is indicated by the background color.

After training on 4 training traces, the classifier is able to
correctly predict the starting moment of secret keybit phases
(labels -1 and 1) in many cases on the 16 test traces. This
can be seen in Figure 5, where the classifier output of each
moment in the trace is shown: 0 for no boundary, 1 for the start
of a ‘duplicate,’ or -1 for the start of an ‘add.’ There might
be small clusters of 1 and -1 predicted around the boundaries.
In this fragment, the predictions line up perfectly with the
ground truth (the background shade). Finally, after running a
peak detector on the classifier results, which detects a 1 or -1
prediction, and also limits the number of function boundary
predictions in an area, we get a final recovered key bitstream.

To evaluate the validity of the recovered key bits, we com-
pare the ground truth to the recovered key bits. Frequently, the
key bits will be mis-predicted - either an extra keybit, missing
keybit, or wrong keybit. Taking the reasoning from [3], we
estimate the amount of brute force necessary to go from
the initial guess to the final keybits, using the timing of the
predictions as a hint. If the predictions are too close together,
we guess the middle bit may be a spurious bit, or one of
its neighbors might be, or none of these are (total of 4).
Similarly, if we see a gap in the predictions, we guess we may
have to insert a keybit there, or none (total of 3). If a bit is
wrong, we assume we have to flip one of every bits (around
384 possibilities, depending on the number of 1 bits in the
key). We simulate this process using the optimal Levenshtein
edit sequence from guessed keybits to correct keybits, assign
the corresponding work factor for each step, and multiply the
possibilities to estimate the brute force work factor.

From one particular attacker cacheline, after training on 4
of its traces, we take 25 different traces and evaluate the key
recovery performance on the test traces. The result can be seen
in Figure 6. We see a histogram of the brute force effort to
recover the real key each time. We repeat this for 100 randomly
selected attacker cachelines: we evaluate the brute force effort
needed to recover the key for 16 different traces of a single

0 5 10 15 20 25 30 35 40
log2 brute force attempts

0

1

2

3

4

5

Fr
eq

ue
nc

y

Brute force effort needed

Figure 6: Brute force needed for key recovery after analyzing 25 different
traces from one signal source.

10 20 30 40
log2 brute force attempts (median of 16 trials)

0

2

4

6

8

10

Fr
eq

ue
nc

y

Brute force needed (median of 16 trials) for 100 different cachelines

Figure 7: Histogram of median brute force effort of 16 different traces from
100 randomly selected cacheline signal sources.

cacheline, and take the median of this effort. For each of 100
cachelines, we show this median in the histogram in Figure 7.
We used a cutoff of 260 as the brute force median work factor.
3 out of 100 cases were above this cutoff. The majority of the
cachelines give a median work factor of 220 or lower.

We show that with modest brute force effort, a majority of
attacker cachelines are usable as side channel signal sources.
This shows that the DRAM bank conflict signal gives a
realistic side channel key recovery avenue for this victim.

V. CONCLUSION

We showed how an attacker can exploit timing differences
caused by DRAM bank conflicts to implement complex side
channel attacks: the page miss signal is an excellent source
to leak information about memory accesses with fine-grained
timing granularity. Our attack does not require the spy and
victim to share DRAM rows — only banks — and shows that
mitigation proposals in which sensitive code and data regions
are marked as uncached, would be likely insufficient to stop
all side channel attacks.



REFERENCES

[1] C. Percival, “Cache missing for fun and profit,” 2005.
[2] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,

L3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 719–732.

[3] B. Gras, K. Razavi, H. Bos, C. Giuffrida et al., “Translation leak-aside
buffer: Defeating cache side-channel protections with tlb attacks.” in
USENIX Security Symposium, vol. 216, 2018.

[4] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level Cache
Side-channel Attacks are Practical,” in IEEE Symposium on Security and
Privacy, 2015.

[5] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Composite-
isa cores: Enabling multi-isa heterogeneity using a single isa,”
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2019. [Online]. Available: http://dx.doi.org/10.
1109/hpca.2019.00026

[6] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[7] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[8] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 368–379.

[9] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space aslr,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 191–205.

[10] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with intel tsx,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 380–392.

[11] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “Aslr on the
line: Practical cache attacks on the mmu,” NDSS (Feb. 2017), 2017.

[12] O. Acıiçmez and J.-P. Seifert, “Cheap hardware parallelism implies
cheap security,” in Fault Diagnosis and Tolerance in Cryptography,
2007. FDTC 2007. Workshop on. IEEE, 2007, pp. 80–91.

[13] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and N. Tuveri,
“Port contention for fun and profit,” in Security and Privacy (SP), 2019
IEEE Symposium on. IEEE, 2019.

[14] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: exploit-
ing speculative execution through port contention,” arXiv preprint
arXiv:1903.01843, 2019.

[15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Understanding
and mitigating covert channels through branch predictors,” ACM Trans-
actions on Architecture and Code Optimization (TACO), vol. 13, no. 1,
pp. 1–23, 2016.

[16] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev et al.,
“Branchscope: A new side-channel attack on directional branch pre-
dictor,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2018, pp. 693–707.

[17] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi, “Absynthe:
Automatic blackbox side-channel synthesis on commodity microarchi-
tectures.” in NDSS, 2020.

[18] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 88–105.

[19] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain times.”
in USENIX Security Symposium, 2016, pp. 463–480.

[20] Y. Cao, Z. Chen, S. Li, and S. Wu, “Deterministic browser,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 163–178.

[21] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks,” 2012 39th Annual International Symposium on
Computer Architecture (ISCA), vol. 40, no. 3, pp. 118–129, 2012.
[Online]. Available: http://dx.doi.org/10.1109/isca.2012.6237011

[22] M. Godfrey and M. Zulkernine, “Preventing cache-based side-channel
attacks in a cloud environment,” IEEE transactions on cloud computing,
vol. 2, no. 4, pp. 395–408, 2014.

[23] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“Context: A generic approach for mitigating spectre.” in NDSS, 2020.

[24] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 431–446.

[25] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf, “Cure: A security architecture with customizable
and resilient enclaves.” in USENIX Security Symposium, 2021, pp. 1073–
1090.

[26] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2016, pp. 871–882.

[27] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in Proceedings of the 2009 ACM
workshop on Cloud computing security. ACM, 2009, pp. 77–84.

[28] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Advances in
Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 15-19, 2010. Proceedings 30. Springer,
2010, pp. 502–519.

[29] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious ram,”
arXiv preprint arXiv:1106.3652, 2011.

[30] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with o
((logn) 3) worst-case cost.” in Asiacrypt, vol. 7073. Springer, 2011,
pp. 197–214.

[31] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk,
and S. Devadas, “Constants count: Practical improvements to oblivious
{RAM},” in 24th {USENIX} Security Symposium ({USENIX} Security
15), 2015, pp. 415–430.

[32] D. Boneh, D. Mazieres, and R. A. Popa, “Remote oblivious storage:
Making oblivious ram practical,” 2011.

[33] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on. IEEE, 2016, pp. 406–418.

[34] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 217–233.

[35] R. Sprabery, K. Evchenko, A. Raj, R. B. Bobba, S. Mohan,
and R. Campbell, “Scheduling, isolation, and cache allocation: A
side-channel defense,” 2018 IEEE International Conference on Cloud
Engineering (IC2E), 2018. [Online]. Available: http://dx.doi.org/10.
1109/ic2e.2018.00025

[36] Intel, “Introduction to cache allocation technology in
the intel xeon processor e5 v4 family,” https://www.
intel.com/content/www/us/en/developer/articles/technical/
introduction-to-cache-allocation-technology.html, February 2016.

[37] ARM, “Memory system resource partitioning and monitoring (MPAM),
for a-profile architecture,” https://developer.arm.com/documentation/
ddi0598/latest/, November 2022.

[38] Intel, “IntelÂ® transactional synchronization extensions
(intelÂ® tsx) overview,” https://www.intel.com/content/www/
us/en/docs/cpp-compiler/developer-guide-reference/2021-8/
tsx-programming-considerations-ov.html.

[39] M. Kettenis, “Mailing list post with cvs message disabling
smt (simultanious multi threading) by default,” https://www.mail-
archive.com/source-changes@openbsd.org/msg99141.html.

[40] Z. Zhang, S. Liang, F. Yao, and X. Gao, “Red alert for power leakage:
Exploiting intel rapl-induced side channels,” in Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security,
2021, pp. 162–175.

[41] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power {Side-Channel} attacks
into remote timing attacks on x86,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 679–697.

[42] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks on
x86,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 355–371.



[43] CVE-2020-8694, “Insufficient access control in the Linux kernel driver
for some Intel(R) Processors may allow an authenticated user to po-
tentially enable information disclosure via local access.” http://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2020-8694, 2020.

[44] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with pre-
emption threshold,” in Proceedings Sixth International Conference on
Real-Time Computing Systems and Applications. RTCSA’99 (Cat. No.
PR00306). IEEE, 1999, pp. 328–335.

[45] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ Track at the RSA Conference.
Springer, 2006, pp. 1–20.

[46] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Cryptographers’ Track at the RSA Conference.
Springer, 2007, pp. 225–242.

[47] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack Directories, Not Caches: Side-Channel Attacks in
a Non-Inclusive World,” in IEEE Symposium on Security and Privacy,
2019.

[48] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring (s): Side
channel attacks on the cpu on-chip ring interconnect are practical.” in
USENIX Security Symposium, 2021, pp. 645–662.

[49] M. Dai, R. Paccagnella, M. Gomez-Garcia, J. McCalpin, and M. Yan,
“Don’t mesh around: Side-channel attacks and mitigations on mesh
interconnects,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 2857–2874.

[50] T. M. O. Mutlu, “Memory performance attacks: Denial of memory
service in multi-core systems,” in USENIX security, 2007.

[51] C. Helm, S. Akiyama, and K. Taura, “Reliable reverse engineering
of intel dram addressing using performance counters,” in 2020 28th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2020,
pp. 1–8.

[52] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-only
reverse engineering of physical dram mappings for rowhammer attacks,”
in 2018 IEEE 3rd International Verification and Security Workshop
(IVSW). IEEE, 2018, pp. 19–24.

[53] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Drama:
Exploiting dram addressing for cross-cpu attacks.” in USENIX Security
Symposium, 2016, pp. 565–581.

[54] G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized row-
swap: mitigating row hammer by breaking spatial correlation between
aggressor and victim rows,” in Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2022, pp. 1056–1069.

[55] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx,” arXiv preprint
arXiv:1705.07289, 2017.

[56] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack.” in USENIX
Security symposium, vol. 25, 2016, pp. 1–18.

[57] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms,” ser. CCS’16.

[58] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 245–261.

[59] “Github repository for context-light.” https://github.com/IAIK/
contextlight., 2019.


