
RISC-H: Rowhammer Attacks on RISC-V

Michele Marazzi and Kaveh Razavi
ETH Zurich

Abstract—The first high-end RISC-V CPU with DDR4 support
has been released just a few months ago. There are currently
no Rowhammer studies on RISC-V devices and it is unclear
whether it is possible to compromise systems on these newer
architectures. With RISC-H, we aim to fill this gap by overcoming
a number of challenges: first, the DRAM functions of the memory
controller are not disclosed, which we reverse engineer via the
bank-conflict side channel. Second, we discover that hammering
many rows achieves a significantly low activation throughput,
making Rowhammer unsuccessful. We determine that this low
performance is caused by a contention in the memory subsystem
when aggressor rows share certain physical address bits and
slow ordering instructions. To address this challenge, we leverage
different column addresses to reduce contention, and we rely
on a novel approach for ordering memory accesses by inserting
surgical delays in the access patterns. Combining these insights,
our new Rowhammer attack, called RISC-H, can trigger the first
DDR4 bit flips from a RISC-V CPU. These results show that
the RISC-V ecosystem is similarly affected by Rowhammer and
further highlights the need for effective mitigations.

I. INTRODUCTION

Rowhammer on modern DRAM has mostly been successful
on high-end complex CPUs from Intel [1–5] and AMD [6].
These mature products, resulting from years of improvements,
render instruction execution fast and the memory controllers
complex. RISC-V CPUs are comparably in their early stage
and it is unclear whether it is possible to trigger Rowhammer
bit flips from these platforms. Our results on the first RISC-
V processor with DDR4 support [7] shows a very low
activation throughput as well as expensive ordering instructions,
impeding Rowhammer attacks. This paper shows how the
careful selection of physical addresses and the insertion of
surgical delays for ordering allows ordered activations with
high throughput, enabling the first successful Rowhammer
attack on RISC-V.

DRAM functions. Rowhammer causes disturbance errors
on victim rows that are in close proximity of an attacker
know. Memory controllers map physical addresses to DRAM
banks and rows using proprietary functions, exploiting DRAM
parallelism to increase performance. Hence, the success of
a Rowhammer attack relies on reverse engineering these
functions. In RISC-H, we use the bank-conflict side channel [8]
to reverse engineer the bank and row functions. We discover
that our target RISC-V CPU employs a linear mapping instead
of the common XOR-based functions of Intel and AMD CPUs
for bank addressing [6, 8].

Activation throughput. A key aspect for a successful Rowham-
mer attacks is a high activation rate generated by the memory
controller to both induce bit flips and to bypass deployed
mitigations [3, 6, 9, 10]. On the Sophon CPU [7], we discover

that subsequent accesses to certain memory accesses are
surprisingly slow. Our characterization shows that this is caused
by a contention in the memory subsystem when memory
addresses share columns bits. Consequently, we are able to
increase the memory activation rate by distributing subsequent
memory requests among different columns.

Memory ordering. Memory requests are reordered by the
memory controller to reduce the number of generated acti-
vations. First, this lowers the effective activation throughput,
required for Rowhammer. Second, DDR4 devices deploy Target
Row Refresh (TRR) as a Rowhammer mitigation [2, 11–13],
which can be bypassed by activating aggressor rows in complex
patterns [1, 2]. To prevent the memory controller from reodering
these patterns and making them ineffective, researchers employ
fencing instructions [1] or pointer chasing [4]. We show that
both these options significantly reduce the activation rate on
the RISC-V CPU. Instead, we devise a novel approach to order
memory requests. We make the key observation that memory
ordering can be achieved by carefully delaying the requests.
By exploiting the row buffer hit as a side channel, we are able
to identify the right amount of delay, which we induce via
NOP instructions.

We combine our insights to build RISC-H, the first Rowham-
mer attack on RISC-V. RISC-H is able to obtain 841 bit flips
in 6 h of fuzzing on a supported DIMM. These bit flips are
highly repeatable (on average, 74% of the times), enabling
reliable Rowhammer exploitation.

Contributions. The following summarizes our contributions:
1. We reverse engineer the proprietary DRAM functions of

the Sophon memory controller.
2. We identify, characterize, and describe how to avoid a

new memory bottleneck that severely slows down the
activation rate.

3. We devise and demonstrate a novel method to efficiently
order memory requests by surgically-inserted delays.

4. We demonstrate Rowhammer bit flips on RISC-V for the
first time.

II. BACKGROUND

In this section, we introduce DRAM (§ II-A), Rowham-
mer (§II-B), and Rowhammer-required CPU primitives (§II-C).

A. DRAM
DRAM devices are used as main memory in current high-

end computing systems. These devices provides fast, dense and
cheap memory. The DDRx protocol [14] describes how the CPU
memory controller (MC) can access DRAM memory, with chips
typically mounted on Dual In-line Memory Modules (DIMMs,

1



����

���������

������
�������������

��
�����
��

�����

���������

	�������������

���������

�����
���

���

����� �

�

Fig. 1: DRAM Architecture and Rowhammer. Memory is organized in many
rows in different banks. A row ACT (1) causes disturbance to nearby data (2).

Fig. 1). Currently, the majority of DIMMs are DDR4 devices,
with the new DDR5 standard [15] being released a few years
ago.
DRAM Hierarchy. The MC needs to respect a logical hierarchy
to access memory. Internally in a DRAM chip, memory
is obtained as densely packed capacitors distributed across
different DRAM banks [16, 17]. Each bank has multiple rows,
and each row has many data columns. When the MC accesses
memory, it needs to specify the bank, the row and the column
associated to the data. Prior to accessing the specific column,
the MC needs to issue an activation (ACT) to the row [18]. Each
bank can only have one row activated at a time. To deactivate
an active row in a bank, the MC issues a precharge (PRE). Once
the row has been activated, the MC can finally read or write
data by specifying a column. Further reads/writes to columns
of an activated row do not require additional activations and
are described as row buffer hits. Due to the internal DRAM
circuitry, activating and precharging rows is slow. For this
reason, MCs will typically try to optimize the order of generated
memory requests such that ACTs and PREs are reduced. This
reordering is done by using a memory request buffer.
DRAM Capacitors. DRAM is based on capacitors, which
are elements capable of storing charge. A single capacitor
allows to encode a single bit of data via the stored charge. Due
to the manufacturing capabilities of integrated circuits (ICs),
these capacitors are extremely small and compact [16]. This
compactness is kept by the highly hierarchical internal structure,
which enables memory chips with large addressability and
cheap price. Because capacitors leak charge, MCs need to send
a refresh command (REF) every tREFi (7.8 us on DDR4) such
that the DRAM chip has time to restore rows to their full
values. An entire chip is fully restored after 8192 refreshes
(tREFW, 64 ms on DDR4). Without these refreshes, stored data
would get corrupted.

B. Rowhammer
The highly-packed capacitors require very dense circuitry

to provide the market with cheaply-produced memory. Unfor-
tunately, such IC scaling has come with drawbacks in terms
of memory reliability. In 2014, researchers demonstrated that
aggressor-row activations can have an effect on nearby victim-
rows on DDR3 devices [19]. The effect, known as Rowhammer,
causes an increased charge leakage that can corrupt victim
data without directly accessing it. To trigger Rowhammer,
aggressor rows that are physically nearby a victim row are
activated repeatedly for a large number of times, known as

Rowhammer threshold (e.g., 50 K), before the victim row is
refreshed by a REF command. This vulnerability has been
subsequently exploited in many different ways from different
attack vectors [4, 5, 20–23] and deeply characterized [10, 24–
30]. As a response, DRAM vendors have deployed Rowhammer
mitigations known as Target Row Refresh (TRR) on DDR4
devices. TRR implements Rowhammer detection mechanisms,
which are followed by the refresh of the victim row [2, 11].
On DDR4 devices, TRR has been shown to be flawed when
advance row activation patterns are used [1]. Research efforts
have provided industry many different Rowhammer mitigations
based on alternative approaches [9, 17, 18, 31–40].

C. CPU Primitives

To reliably perform Rowhammer on DDR4 devices from
different vendors, researchers have relied on two key CPU
primitives. First, the activation rate (i.e., how many ACTs per
second the MC issues) is maximized [3, 6, 9, 10]. Second,
the aggressor rows that are activated are based on complex
patterns to bypass TRR [1]. To ensure the row activation
order, researchers either used pointer chasing or CPU fencing
instructions [1, 4, 6].

III. OVERVIEW

With our research, we aim to successfully flip DRAM bits
via Rowhammer on a RISC-V CPU for the first time. To
achieve this goal, we face multiple challenges.

First, the MC maps physical addresses to specific banks
and rows in a way that is not disclosed. This mapping is
fundamental to perform Rowhammer, as the aggressor and
victim rows need to be placed in physical proximity.

Challenge 1. Reverse engineer the MC DRAM functions
to link physical addresses to DRAM addresses.

We solve challenge 1 in Section § IV by using the bank
conflict side channel [8]. For this purpose, we implemented a
multi-thread counter to measure time.

A high activation rate by the MC is a key Rowhammer
primitive. We seek to understand if the RISC-V CPU is capable
of generating a high activation throughput while allowing for
complex row activations patterns.

Challenge 2. Maximize the DRAM activation rate (i.e.,
ACT/s) without losing aggressors pattern generality.

We address this challenge in Section § V. We identify a
memory bottleneck that substantially slows down the ACTs rate.
In particular, subsequent memory accesses that share particular
bits of the physical address create contention on the memory
subsystem. By distributing temporally-close memory accesses
across different columns, we are able to heavily increase the
activation throughput.

The last challenge is to keep a high row activation rate
without losing control over the order of row activations. As
the RISC-V CPU might not be as complex as Intel and AMD
counterparts, we identified that fencing and other common

2



Tbl. I: Hardware used in RISC-H.

Processor Cores DRAM

Vendor Sophon Vendor T-Head Vendor X
Model SG2042 Model C920 Memory 8 GB
Memory DDR4 Frequency 2GHz Total Banks 16
System Cache 64MB L2 cache 1MB Rows/Bank 64 K
Core Clusters 16 Cores/clusters 4 Production Yr. 2018

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� � � � � � � � � � �

���
����

����
�����


��
	����������		�������

�����


Fig. 2: Reverse engineered DRAM Functions. The memory controller applies
a linear mapping of the bits 6, 14, 15, and 16 to the DRAM banks.

ways to hold activation order intact have a huge toll on the
activation throughput.

Challenge 3. Maintain the order of row activations, without
relying on fencing or pointer chasing.

We assume that the MC scheduling policy is based on
some variation of the First-Ready First-Come-First-Serve (FR-
FCFS) strategies as these are considered standard [41–44], and
we solve challenge 3 by carefully delaying memory requests,
forcing activation ordering. By exploiting the row hit as a side
channel, we prove that our approach is keeping the intended
activation order.

By combining all these aspects, we are able to produce
Rowhammer bit flips in a fast and reproducible way, obtaining
841 bit flips in 6 hours of fuzzing on a supported DIMM.

IV. REVERSE ENGINEERING OF DRAM FUNCTIONS

We report the configuration of our system in Table I. We
use the well-known bank conflict side channel to determine the
DRAM functions [8, 45, 46]. As this is a timing side channel,
we require an accurate and precise method to measure time.
RISC-V provides an instruction called rdcycle, which is
supposed to return the number of cycles executed by the CPU.
However, the RISC-V instruction rdcycle returns a constant
value on our system. We build a counting thread, similar to
previous work [47], obtaining a timer resolution of 4.85 ns.
Results. We use the recently released tool AMDRE [6] to
reverse engineer the DRAM functions allocating a GiB super
page. We adapt AMDRE to rely on shared memory as a counter
and to use the RISC-V fence instruction. Further, we modify
it to use average instead of the minimum and to use more
repetitions to reduce noise. We report the results in Fig. 2. In
the RISC-V CPU under evaluation, the mapping functions are
linear. This differs from the complex XOR-based functions
reported for Intel and AMD [6, 8]. We identify column bits by
exploiting the row buffer hit, accessing couples of addresses
of the same bank where one bit differs. We categorize the bit
as column if the access is fast and classify the remaining as
rows bits.

V. MAXIMIZING THE ACTIVATION RATE

A key aspect of successful Rowhammer bit flips is a high
ACT rate generated by the memory controller. Given the DDR4

������������
������

��������������
��
��

�

	����������������
������������


� �� 
�� 
�� 
�� 

� 
��
��������������������

 �
�­

��
��

�

���������������� �������������������������������

�
��

���
���
���

Fig. 3: Histogram of access times. We report the row access time for couple
of random addresses and for addresses that differ only for the row index.

standard, the minimum time between different ACTs to the
same bank is given by tRC [14], which for our system is
46.5 ns. We seek to understand if the RISC-V CPU is capable
of generating such a high amount of activations per second.

Baseline performance. To evaluate the activation throughput
of the CPU, we measure the time to access an array of 256
different rows that target the same bank. The rows are different,
hence we do not require pointer chasing or fencing to avoid
memory requests reordering. Such reordering would inflate the
throughput by reducing the number of activations, exploiting
row buffer hits. We discover that the average access time per
row is severely slow, around 210 ns. We repeat the experiment
to understand if there is a dependency to the number of accessed
rows. The access time saturates to 210 ns with a high number
of accessed rows, while it is slightly faster (180 ns/ACT) when
very few rows are accessed (e.g., 12 rows). All these values are
much higher than the tRC of the system, making a Rowhammer
attack unlikely to succeed.

We speculate that the design of the CPU might not be as
optimized as for Intel and AMD devices, resulting in contention
on a particular microarchitectural resource. Specifically, we
formulate the hypothesis that this contention is address-
dependent, for example, due to accessing internal cache blocks,
other sub-blocks, or due to the internal MC design. We devise
the following experiments to investigate this effect, in which
we use contiguous memory obtained from a GiB super page.

Identifying the memory bottleneck — first experiment. Our
aim is to identify if two subsequent memory requests have
resource contention, and if this contention can be avoided by
varying their addresses. To this end, we first generate addresses
that only differ for the row index. Given the previous results,
we expect their combined access time to result in a bank
conflict. We show the results in Fig. 3, which further includes
the histogram of the bank-conflict side channel previously
used. Surprisingly, the access time of different rows is always
slower than the bank-conflict time. Note that the access time is
slightly lower than in the previous experiment (160 ns compared
to 180 ns), as we directly dereference registers for a more
controlled experiment instead of accessing an array in a loop.

Identifying the memory bottleneck — second experiment.
The results from AMDRE are generated by using random
couples of addresses. These random couples cause bank
conflicts, yet their access time is faster than our experiment.
Therefore, as we are now using almost identical addresses, we
wish to see if particular parts of them are causing contention that

3



�
�
�
�
�
��
��
��
��
��
��
��
��
��
��

��
�
��
��
��
��
���

��
�

��

�

�	
	�

��
��
���

�
�
��
��
��

�� � � � �� �� �� �� �� �� �� �� �� ��
�
�		��������
��������

��
��
���
���
���
���
���
���
���
���
���

��
��
�
�

��
��

��
��
�

�����
���
	���������
�
�����

��
�	������
	���������
�

Fig. 4: Time access experiment. We access two addresses (A1, A2), where
A1 = base⊕ b1 and A2 = base⊕ b2, and we report the row access time.

�����������������
�
��
��
���
�
�
���

��
�
�

��
��
��
	�
��

��� ���
� ��������������

�������
�����
��� ��
 ����� � 
 � �� �� �� �
 ��

Fig. 5: Average access time when using different columns. Pointer chasing
(Ptr) access time is severely slower compared to Array access (Array). When
multiple columns are used, the access time of Array becomes close to tRC.

increases the slowdown. In what follows, instead of changing
only the row index, we vary each address bit at the time.
Starting from a base address, we measure the combined access
time of two addresses, A1 and A2, where A1 = base ⊕ b1
and A2 = base ⊕ b2. We test all combinations of b1 and b2
between b0 − b29, and report the results in Fig. 4. From the
results we identify three categories of access speed: (i) fast,
(ii) semi-slow, and (iii) slow. Semi-slow timings correspond
to the bank-conflict found during the DRAM function reverse
engineering. Instead, slow timings correspond to the “extra”
slow access.

Address dependency of the bottleneck. By flipping a bank
bit (e.g., b14) only in one address, we would expect the timing
to be always fast, as A1 and A2 would target different banks.
Instead, in many of the combinations the access time is slow.
By varying bits between b7−b13, different bank accesses result
(as expected) in fast memory accesses. By varying row bits
(e.g., b19) and any bit between b7−b13, we obtain the expected
bank conflict timing. We conclude that subsequent accesses
of addresses with identical bits b7 − b13 are severely slowed
down. Coincidentally, these bits correspond to the column bits
of a row. We now investigate how many different columns, in
an access loop, are required to obtain a high ACT rate.

Columns dependency. We distribute from 1 to 128 different
columns to 256 different rows accessed in a loop. For each
setup, we report the average access time per row in Fig. 5. After
a few columns, the access time saturates close to the protocol
limit (tRC). For simplicity, in the remainder of the paper, we
will always linearly distribute the columns of accessed memory

�����

���������
���� �������� ���� ���� ����

���� �������� �������� ����

����

����

�����
���� ���� ���� ����

�������������


�����
����


�����
����


�����
����

����
����


�����


����� 
�����

�������������������������

��������������������������������

Fig. 6: Memory requests ordering. In the first case, no ordering is enforced
and different memory requests are merged in single activations. In the second
case, delayed memory requests induce multiple activations.

region across all possibilities (i.e., 128). The reader should note
that this is required independently from the accessed rows (i.e.,
if the pattern is accessing the same row or different ones).

VI. ENFORCING MEMORY REQUESTS ORDER

We now analyze the impact of enforcing memory requests
order on the activation rate.

Effect of memory requests reordering. MCs try to reduce
activations by reordering memory requests that would target
the same row. For Rowhammer attacks, this has two damaging
effects. First, the effective ACT throughput will be reduced,
as rows will be kept open longer than required. Second,
state-of-the-art Rowhammer patterns are complex and require
precise ordering of aggressor rows to fool the deployed TRR
mechanisms [6]. If requests are reordered, these pattern would
get scrambled, reducing the possibility of Rowhammer success.

Speed of pointer chasing and fence. The two main ways
to order memory requests is to use pointer chasing and the
fence instruction. We now evaluate their speed on our RISC-
V CPU, by measuring the average access time of 256 ad-
dresses. Accesses divided by fence have an average speed of
210 ns/ACT, regardless of the number of columns used. Pointer
chasing increases its speed when temporally-close accesses are
distributed among different columns, however, the access is
still severely slow saturating at around 145 ns/ACT (Fig. 5).

In Section §V, we observed that the system is capable of
reaching high access speed (55 ns/ACT). Therefore, we cannot
rely on fence and pointer chasing as strategies for preserving
the order of memory requests. With our novel delayed memory
requests, we now demonstrate how it is possible to reach high
speed while ensuring ordering.

A. Memory ordering via delayed accesses

We assume the MC scheduling policy to be based on a
variation of First-Ready First-Come First-Serve (FR-FCFS), as
these are considered standard strategies [41–44]. When these
policies are employed, the memory request buffer will be used
to batch requests that go to the same rows, incrementing row
hit and decreasing the number of ACTs (Fig. 6) [41].

We aim to enforce memory ordering by delaying memory
requests. If the request buffer does not (yet) contain requests
that can be merged, it should eventually perform the activation.
Likewise, if a request has been in the queue for a long time (i.e.,

4



���

������������������������� �������������������������

���
�������
���������
	�
�

��
��
��
��

� �� ��� ��� ��� ��� ���
�	
�������������

���� �� ��� ��� ��� ��� ����

��

��

��

��

�
��
��
��


�

��
� 	

�­
�
��
��
��


�

��
� 	

�­
�������������������� ��������������������

���
�������
���������
	�

Fig. 7: Delayed access experiment. We measure 3 ACTs (A,B,C) and compare
it to 3 requests that can be sped-up by reordering (A,B,A). When enough
NOPs are inserted, the MC does not reorder accesses anymore. We repeat the
experiment with 16 different rows compared to the access pattern (A,B)×8.

old request), it should be prioritized over new memory requests
to avoid starvation [42]. We explain this concept in Fig. 6.

We perform our technique by placing NOPs in between the
different requests. As the CPU does not expose any relevant
performance counters (e.g., issued activations), we must rely
on a carefully crafted experiment to validate our method and
to understand for how long the requests should be delayed for.

NOPs-delayed requests experiment. An access pattern with
3 different rows (e.g., A-B-C) forces the MC to issue 3 ACTs.
Instead, a pattern that targets the same row twice (e.g., A-B-A)
allows the MC to reorder requests, resulting in only 2 ACTs
and a row buffer hit. We perform an experiment to measure this
difference. In Fig. 7, we report the average time per memory
request of the two cases. The pattern A-B-A is evidently faster
due to memory reordering. If our hypothesis is correct, the
pattern A-B-A should generate 3 ACTs when memory requests
are delayed long enough. We interleave the accesses with a
varying number of NOPs, from 0 to 300, and report the results
in Fig. 7. When around 220 NOPs are inserted, the pattern
A-B-A starts behaving as expected.

Now, we generalize the experiment and measure the effect
when multiple reordering are possible, as this is the typical
Rowhammer case. We repeat the experiment by accessing 16
different rows (e.g., A-B-C-D...) compared to eight times
the couple A-B. As previously found, around 220 NOPs the
behavior converges to the expected timing (Fig. 7).

Finally, we evaluate the overhead of our technique. Repeating
the experiment of Fig. 5, we measure the average access time
for a loop of different rows with 220 NOPs interleaved. The
result is an average slow down of only 3 ns per access, which
shows that our new ordering technique has very low overhead
and is viable to perform Rowhammer on the RISC-V CPU.

VII. RISC-H

We combine all the previous observations and results to
perform Rowhammer on the first high-end RISC-V CPU. We
now explain the setup and the results.

Setup. We allocate 1 GiB of memory as transparent huge pages
(2 MiB) and verify that all the pages result in bank conflict. This
is expected, as the highest bank bit is the 16th (i.e., lower than
2 MiB, Fig. 2). Then, we initialize the 1 GiB of memory with
32 different row patterns of 8 Bytes, selected by hashing the
memory address. This allows faster execution times compared
to the performance toll of using randomized memory to check
for bit flips. The patterns are based on classic repetitions of
0xAA, 0xEE, 0x00, 0xFF, and variations.

We perform Rowhammer by generating non-uniform patterns,
as they represent state-of-the-art [1, 6]. We do not use
Blacksmith as a dependency (asmjit) is not yet ported to RISC-
V, but instead rely on our own implementation called RISC-H.
All memory requests are interleaved by 220 NOPs and linearly
distributed across 128 columns. We fuzz each pattern for a
duration of 4× tREFW . After fuzzing, we check for bit flips
for only the addresses that correspond to the same targeted
bank and whose rows are nearby the aggressors. This further
improves the performance of RISC-H. Once we identify a bit
flip, we test its repeatability by testing the same pattern 10
times for double the time. We further test hammering by using
fence, pointer chasing, and without any ordering. All the
experiments take place in a controlled environment at 23◦ C.
Results. We discover that on the tested DIMM, we are able
to trigger bit flips with double-sided patterns (i.e., frequency-
based patterns are not necessary) of which we report the results.
With our complete approach to RISC-H, we obtain 841 unique
bit flips in only 6 h of fuzzing. The first bit flip occurs within
one minute after the fuzzing is started (i.e., after data has been
initialized to DRAM). Bit flips have a high repeatability, with
an average success rate of 7.4 out of 10 times.

We confirm that we did not obtain bit flips when the ordering
was absent (i.e., no NOPs), or when it was enforced by fence
or by pointer chasing. In conclusion, our delayed-request
ordering is necessary to get Rowhammer bit flips on the CPU.
Limitations and future work. We evaluated RISC-H only
on one DIMM. This is due to the extremely limited memory
support provided by the CPU. We tested 85 DDR4 DIMMs
present in our lab, of which only one resulted in the system
booting. We tried to clone the SPD values of the working
DIMM to different modules with the same timings and
geometry, and we further tried 22 SODIMMs connected via
an adapter. Unfortunately, this also did not result in booting.
Future studies should assess RISC-H on multiple devices in
case the DIMM support will be extended.

VIII. CONCLUSION

With RISC-H, we proved that Rowhammer bit flips are
possible on the first high-end RISC-V CPU. To perform
Rowhammer, we had to overcome multiple challenges. First, we
identified the undisclosed DRAM functions by exploiting the
bank-conflict side channel. Then, we discovered a memory
bottleneck related to the address of subsequent memory
requests, which made the ACT rate insufficient to trigger bit
flips. As a solution, we distributed the activations across the
many row columns. Lastly, we devised a novel technique to

5



enforce memory requests order with high performance. By
carefully delaying accesses with NOP instructions, we enforce
row activations without relying on slow fence instructions or
pointer chasing. To the best of our knowledge, we are the first
to demonstrate bit flips on a RISC-V CPU.

ACKNOWLEDGMENT

We thank our anonymous reviewers and Patrick Jattke for
their valuable feedback. This work was supported by the Swiss
National Science Foundation under NCCR Automation, grant
agreement 51NF40 180545, and the Swiss State Secretariat
for Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE).

REFERENCES

[1] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi,
“BLACKSMITH: Scalable Rowhammering in the Frequency Domain,”
in IEEE S&P, 2022, pp. 716–734. [Online]. Available: https:
//ieeexplore.ieee.org/document/9833772/

[2] P. Frigo, E. Vannacc, H. Hassan, V. v. der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides of
Target Row Refresh,” in IEEE S&P, 2020, pp. 747–762. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9152631

[3] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and
O. Mutlu, “Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers,” in IEEE S&P, 2020, pp. 712–728.
[Online]. Available: https://ieeexplore.ieee.org/document/9152654/

[4] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized Many-sided Rowhammer Attacks
from JavaScript,” in USENIX Security ’21, Aug. 2021, pp. 1001–1018.

[5] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading
Bits in Memory Without Accessing Them,” in IEEE S&P ’20, May 2020,
pp. 695–711.

[6] P. Jattke, M. Wipfli, F. Solt, M. Marazzi, M. Bölcskei, and K. Razavi,
“Zenhammer: Rowhammer attacks on amd zen-based platforms,” in 33rd
USENIX Security Symposium (USENIX Security 2024), 2024.

[7] SOPHGO, “Sophon SG2042,” 2024. [Online]. Available: https:
//en.sophgo.com/product/introduce/sg2042.html

[8] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX
Security ’16, Aug. 2016, pp. 565–581.

[9] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 743–755,
2016.

[10] J. S. Kim, M. Patel, A. G. Yaglikci, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques,” in ISCA, 2020,
pp. 638–651. [Online]. Available: https://ieeexplore.ieee.org/document/
9138944/

[11] H. Hassan, Y. C. Tugrul, J. S. Kim, V. van der Veen, K. Razavi,
and O. Mutlu, “Uncovering In-DRAM RowHammer Protection
Mechanisms: A New Methodology, Custom RowHammer Patterns, and
Implications,” in MICRO, 2021, pp. 1198–1213. [Online]. Available:
https://dl.acm.org/doi/10.1145/3466752.3480110

[12] S. Hong, D. Kim, J. Lee, R. Oh, C. Yoo, S. Hwang, and J. Lee,
“Dsac: Low-cost rowhammer mitigation using in-dram stochastic and
approximate counting algorithm,” arXiv preprint arXiv:2302.03591, 2023.

[13] W. Kim, C. Jung, S. Yoo, D. Hong, J. Hwang, J. Yoon, O. Jung, J. Choi,
S. Hyun, M. Kang et al., “A 1.1 v 16gb ddr5 dram with probabilistic-
aggressor tracking, refresh-management functionality, per-row hammer
tracking, a multi-step precharge, and core-bias modulation for security
and reliability enhancement,” in 2023 IEEE International Solid-State
Circuits Conference (ISSCC). IEEE, 2023, pp. 1–3.

[14] JEDEC Solid State Technology Association, “DDR4 SDRAM,” Sep.
2012. [Online]. Available: https://www.jedec.org/sites/default/files/docs/
JESD79-4.pdf

[15] “JESD79-5B: Double Data Rate 5 (DDR5) SDRAM,” 2022. [Online].
Available: https://www.jedec.org/standards-documents/docs/jesd79-5b

[16] M. Marazzi, T. Sachsenweger, F. Solt, P. Zeng, K. Takashi, M. Yarema,
and K. Razavi, “Hifi-dram: Enabling high-fidelity dram research by
uncovering sense amplifiers with ic imaging,” in 51st IEEE/ACM
International Symposium on Computer Architecture (ISCA), 2024.

[17] M. Marazzi, F. Solt, P. Jattke, K. Takashi, and K. Razavi, “REGA:
Scalable Rowhammer Mitigation with Refresh-Generating Activations,”
in IEEE S&P, 2023. [Online]. Available: https://comsec.ethz.ch/
wp-content/files/rega sp23.pdf

[18] M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “ProTRR: Principled yet
Optimal In-DRAM Target Row Refresh,” in IEEE S&P, 2022, pp. 735–
753. [Online]. Available: https://ieeexplore.ieee.org/document/9833664

[19] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in ISCA, 2014, pp. 361–
372. [Online]. Available: http://ieeexplore.ieee.org/document/6853210/

[20] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, 2015.

[21] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in 25th
USENIX Security Symposium (USENIX Security 16), 2016, pp. 1–18.

[22] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 245–261.

[23] K. Mus, Y. Doröz, M. C. Tol, K. Rahman, and B. Sunar, “Jolt: Recovering
tls signing keys via rowhammer faults,” in 2023 IEEE Symposium on
Security and Privacy (SP). IEEE, 2023, pp. 1719–1736.

[24] Z. Lang, P. Jattke, M. Marazzi, and K. Razavi, “Blaster: Characterizing
the blast radius of rowhammer,” in 3rd Workshop on DRAM Security
(DRAMSec) co-located with ISCA 2023. ETH Zurich, 2023.

[25] H. Nam, S. Baek, M. Wi, M. J. Kim, J. Park, C. Song, N. S. Kim, and J. H.
Ahn, “Dramscope: Uncovering dram microarchitecture and characteristics
by issuing memory commands,” arXiv preprint arXiv:2405.02499, 2024.

[26] W. He, Z. Zhang, Y. Cheng, W. Wang, W. Song, Y. Gao, Q. Zhang,
K. Li, D. Liu, and S. Nepal, “Whistleblower: A system-level empirical
study on rowhammer,” IEEE Transactions on Computers, 2023.

[27] A. Olgun, M. Osseiran, A. G. Yağlıkçı, Y. C. Tuğrul, H. Luo, S. Rhyner,
B. Salami, J. G. Luna, and O. Mutlu, “An experimental analysis of
rowhammer in hbm2 dram chips,” in 2023 53rd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks-Supplemental
Volume (DSN-S). IEEE, 2023, pp. 151–156.

[28] L. Orosa, A. G. Yaglikci, H. Luo, A. Olgun, J. Park, H. Hassan,
M. Patel, J. S. Kim, and O. Mutlu, “A Deeper Look into RowHammer’s
Sensitivities: Experimental Analysis of Real DRAM Chips and
Implications on Future Attacks and Defenses,” in MICRO, 2021, pp.
1182–1197. [Online]. Available: https://doi.org/10.1145/3466752.3480069

[29] A. G. Yağlıkçı, H. Luo, G. F. De Oliviera, A. Olgun, M. Patel,
J. Park, H. Hassan, J. S. Kim, L. Orosa, and O. Mutlu, “Understanding
rowhammer under reduced wordline voltage: An experimental study
using real dram devices,” in 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2022,
pp. 475–487.

[30] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu,
M. Nissler, and D. Gruss, “{Half-Double}: Hammering from the next
row over,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 3807–3824.

[31] T. Bennett, S. Saroiu, A. Wolman, L. Cojocar, and A.-G. Llc,
“Panopticon: A Complete In-DRAM Rowhammer Mitigation,” 2021.
[Online]. Available: https://dramsec.ethz.ch/papers/panopticon.pdf

[32] M. Wi, J. Park, S. Ko, M. J. Kim, N. S. Kim, E. Lee, and J. H. Ahn,
“SHADOW: Preventing Row Hammer in DRAM with Intra-Subarray
Row Shuffling,” in HPCA, 2023, pp. 333–346. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10070966

[33] J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and secure row-swap:
Efficient and safe row hammer mitigation in memory systems,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 374–389.

6

https://ieeexplore.ieee.org/document/9833772/
https://ieeexplore.ieee.org/document/9833772/
https://ieeexplore.ieee.org/abstract/document/9152631
https://ieeexplore.ieee.org/document/9152654/
https://en.sophgo.com/product/introduce/sg2042.html
https://en.sophgo.com/product/introduce/sg2042.html
https://ieeexplore.ieee.org/document/9138944/
https://ieeexplore.ieee.org/document/9138944/
https://dl.acm.org/doi/10.1145/3466752.3480110
https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf
https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf
https://www.jedec.org/standards-documents/docs/jesd79-5b
https://comsec.ethz.ch/wp-content/files/rega_sp23.pdf
https://comsec.ethz.ch/wp-content/files/rega_sp23.pdf
https://ieeexplore.ieee.org/document/9833664
http://ieeexplore.ieee.org/document/6853210/
https://doi.org/10.1145/3466752.3480069
https://dramsec.ethz.ch/papers/panopticon.pdf
https://ieeexplore.ieee.org/abstract/document/10070966


[34] A. Olgun, Y. C. Tugrul, N. Bostanci, I. E. Yuksel, H. Luo, S. Rhyner,
A. G. Yaglikci, G. F. Oliveira, and O. Mutlu, “Abacus: All-bank activation
counters for scalable and low overhead rowhammer mitigation,” arXiv
preprint arXiv:2310.09977, 2024.

[35] M. Kim, J. Park, Y. Park, W. Doh, N. Kim, T. Ham, J. W.
Lee, and J. Ahn, “Mithril: Cooperative Row Hammer Protection on
Commodity DRAM Leveraging Managed Refresh,” in HPCA, 2022, pp.
1156–1169. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/HPCA53966.2022.00088

[36] M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling
low-overhead mitigation of row-hammer at ultra-low thresholds via hybrid
tracking,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 699–710.

[37] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene:
Strong yet lightweight row hammer protection,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 1–13.

[38] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi et al., “Blockhammer:
Preventing rowhammer at low cost by blacklisting rapidly-accessed dram
rows,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2021, pp. 345–358.

[39] A. Saxena, G. Saileshwar, P. J. Nair, and M. Qureshi, “Aqua: Scalable
rowhammer mitigation by quarantining aggressor rows at runtime,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 108–123.

[40] G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized row-
swap: Mitigating row hammer by breaking spatial correlation between
aggressor and victim rows,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 1056–1069.

[41] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling
for chip multiprocessors,” in 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007). IEEE, 2007, pp.
146–160.

[42] P. K. Valsan and H. Yun, “Medusa: a predictable and high-performance
dram controller for multicore based embedded systems,” in 2015 IEEE
3rd international conference on cyber-physical systems, networks, and
applications. IEEE, 2015, pp. 86–93.

[43] W. K. Zuravleff and T. Robinson, “Controller for a synchronous dram
that maximizes throughput by allowing memory requests and commands
to be issued out of order,” May 13 1997, uS Patent 5,630,096.

[44] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” ACM SIGARCH Computer Architecture
News, vol. 28, no. 2, pp. 128–138, 2000.

[45] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One
Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation,”
in USENIX Security ’16, Aug. 2016, pp. 19–35.

[46] M. Wang, Z. Zhang, Y. Cheng, and S. Nepal, “DRAMDig: A Knowledge-
assisted Tool to Uncover DRAM Address Mapping,” in DAC ’20, Jul.
2020.

[47] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “Aslr on the
line: Practical cache attacks on the mmu.” in NDSS, vol. 17, 2017, p. 26.

7

https://doi.ieeecomputersociety.org/10.1109/HPCA53966.2022.00088
https://doi.ieeecomputersociety.org/10.1109/HPCA53966.2022.00088

	Introduction
	Background
	DRAM
	Rowhammer
	CPU Primitives

	Overview
	Reverse Engineering of DRAM Functions
	Maximizing the Activation Rate
	Enforcing Memory Requests Order
	Memory ordering via delayed accesses

	RISC-H
	Conclusion
	References

